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Abstract. In this paper, the statistical mechanics of a non-stretching elastica in two-
dimensional space using the path integral method is investigated. In the calculation, the
modified Korteweg–de Vries (MKdV) hierarchy naturally appeared in the equations including
the temperature fluctuation. We have classified the moduli of the closed elastica in a heat
bath and summed the Boltzmann weight with the thermal fluctuation over the moduli. Due
to the bilinearity of the energy functional, its exact partition function has been obtained. By
investigation of the system, it is conjectured that an expectation value at a critical point of this
system obeys the Painlevé equation of the first kind and its related equations are extended by
the Korteweg–de Vries hierarchy. Furthermore, we also comment on the relation between the
MKdV hierarchy and the Becchi–Rouet–Stora transformation in this system.

1. Introduction

Elastica has sometimes appeared in the history of mathematical physics according to [1–4].
The problem of elastica, an ideal thin elastic rod, was proposed by James Bernoulli in
1691. By their investigations on the behaviour of an elastica, Bernoulli’s family and
related people, Euler, d’Alembert and so on, discovered many non-trivial mathematical
and physical facts, for example, classical field theory, minimal principle, elliptic function,
mode analysis, nonlinear differential equations etc [1–4]. In fact, James Bernoulli derived
the elliptic integral related to the lemniscate function in 1694, before Fagnano found his
lemniscate function [1–3], and found that the force of elastica is proportional to the inverse
of its curvature radius [1]. His nephew, Daniel Bernoulli followed James’ discoveries
and discovered the energy functional of elastica and its minimal principle around 1738.
Succeeding these discoveries, Euler derived the elliptic integral of general modulus as a
shape of elastica using Daniel’s minimal principle and numerically integrated it. Then
he completely classified shapes of the static elastica by a numerical sketch [1], which
are, nowadays, known as special cases of the loop soliton [5]. Even though in the
computations Euler did not directly use the static sine–Gordon equation or the static modified
Korteweg–de Vries (MKdV) equation, these computations essentially imply discovery of the
integrable nonlinear differential equation, the investigation of its moduli and first application
of algebro-geometrical functions to physics. It should be noted that they came from the
studies on the elastica. Furthermore, it is well known that the elastica problem is the simplest
prototypeσ -modelS1→ SO(2) or SO(3) [6, 7], which was found in the 18th century and
investigated by Kirchhoff in the last century [4].

Thus the elastica problem seems to be a legacy from before the last century but
its properties are not completely understood and its role in mathematical physics is still
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important. The difficulty in solving the elastica problem is that one must consider the
constraint condition such as the isometry (non-stretch) condition and boundary condition. In
fact, even though it is not an elastica problem, Goldstein and Petrich naturally rediscovered
the MKdV hierarchy through (virtual) dynamics of a space curve with isometry condition
[8, 9]. (Readers should note that the time-development of the physical elastic rod is not
governed by the MKdV hierarchy in general [7, 9–14] even though in some papers it seems
to be misunderstood.) They showed that the MKdV hierarchy can be geometrically realized.
Following their works, new geometrical interpretations of soliton theory using the space
curves were developed ([15] and references therein). For example, Doliwa and Santini gave
a new construction of the inverse scattering method with non-vanishing spectral parameters
using a space curve in ann-dimensional sphere [15]. (In [15], the history of the (new
and old) studies on the relations between soliton theory and isometry space curves are also
described in detail.) Furthermore, using the Goldstein–Petrich construction, it has been
proved that the Hirota bilinear equation and theτ function of the MKdV hierarchy [16] can
also be translated into the geometrical language of a non-stretching space curve [11]. The
classical analogue of the vertex operator naturally appears as a complex tangent vector of
the curve [11].

However, these approaches are just mathematical and geometrical ones but are not
directly connected with the physical problem because in most of the works there is little
physical reasoning why the MKdV hierarchy must appear in the physical system [8, 9, 15].
In other words, they were able to show that constituents of the soliton theory are connected
with the space curve geometry but could not explain why they are gathered and become the
soliton equation. In [11], we partially pointed out that taking into account that the soliton
theory is a kinematic object and the minimal principle (stationary principle) is essential, one
should not deal with a mathematical space curve but should investigate a curve with energy
functional or an elastica. Thus the first purpose of this paper is to present a physical answer
to the question by considering the statistical mechanics of elastica.

On the other hand, the study of an elastic chain model of a large polymer like
deoxyribonucleic acid (DNA) is current in polymer science [17–24]. In the case of DNA, it
usually occurs as a double helix with two complementary nucleotide chains winding around
a common axis and the common axis of the looped DNA often folds into intricate structure,
or a supercoiled form [17]. Due to its enormous size, conformation of the double helical
polymer needs topological and geometrical studies [17–21]. Thus the double helical polymer
and, similarly, other large polymers [23] are often modelled as thin elastic isotropic rods
or an elastica and studied from the kinematic and topological point of view. Topological
invariance such as the linking number classifies the shape of the large polymer in three-
dimensional Euclidean spaceR3 [17]. Based on the Kirchhoff model of an elastica in
R3 and the nonlinear Schrödinger equation, their possible kinematic conformations were
considered [17–20]. Partial thermal effects on their shapes were argued in [18]. Furthermore,
a molecular dynamics study combining with the elastic energy model was reported [21] and
then a topology change related to the knot was found [21, 22].

Statistical mechanics of the elastic chain as a model of a large polymer like DNA was
studied by Sait̂o et al using the path integral [23, 24]. They calculated some exact partition
function of the energy functional of the elastic chain. Such a chain model is sometimes
called a wormlike chain model [25]. Their approach is successive in polymer physics
and influences recent works ([26] and references therein). However, they did not pay any
attention to the isometry condition in calculation of the path integration even though they
imposed an isometry condition after computation (a kind of quantization); they summed
over all configuration space without an isometry condition. It should be noted that the
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constraint does not commute with quantization and statistical treatment [27]. (An example
of such inconsistency is shown in [28].)

It is a natural assumption that flexible polymers which cannot stretch as a classical
object (at zero temperature) cannot stretch even in a heat bath in the classical regime, i.e.
neglecting the quantum effect. Hence, it is very important to calculate the partition function
of the elastica with isometry conditions and sum the Boltzmann weight only over allowed
conformations.

The second purpose of this paper is to investigate the behaviour of an elastica, as a
model of a closed large polymer like DNA, in a heat bath of two-dimensional space, whose
shape is determined by its elasticity and stretch is negligible. As will be shown later, this
investigation is identified with the first purpose to clarify the physical meaning of the MKdV
hierarchy.

We wish to note that in the case when the elastic torsion force of an elastica in
three-dimensional space is negligible, the conformation of the elastica is expressed by the
nonlinear Schr̈odinger equation [17–21]. Using the similarity between the MKdV equation
and the nonlinear Schrödinger equation, the system we will deal with can be extended to the
three-dimensional system [15, 28]. However, due to the dimensionality, handling the MKdV
equation is easier than calculating the nonlinear Schrödinger equation. Thus in this paper,
we investigate only the elastica in a plane as a first step, and thanks to two-dimensionality,
give rigorous arguments for it. However, as long as a polymer is in the region of the phase
diagram in which its elastic torsion force can be neglected, this assumption with respect to
two-dimensionality is not so far from physics as we discuss in the final section.

Furthermore, it is known that DNA sometimes exhibits topology changes and has a
topological isomer [22, 29]. In this paper, as we deal with an elastica in two-dimensional
space, there is no knot invariance but there exists a writhing number as a topological
invariance of a curve in two-dimensional space if crossings are allowed [28]; the writhing
number corresponds to the linking number of a curve in three-dimensional space. Thus
in this paper, even though the elastica in two-dimensional space will be investigated, we
will allow the crossings if they can be realized when embedded in three-dimensional space.
Then we will argue the topological change with respect to the fundamental group on this
problem instead of knot invariance as in [30].

The organization of this paper is as follows. Section 2 reviews the classical shape of an
elastica in two-dimensional flat space adding the infinity point, i.e.CP 1. In section 3, we
investigate the statistical mechanics of an elastica. First, we consider the thermal fluctuation
of the extremum point of a partition function of the elastica in terms of the path integral
method. Then we obtain the MKdV hierarchy by physical requirements. Second, we
investigate the moduli space of the quasi-classical elastica, which is the extremum point of
the partition function. Finally, we sum the Boltzmann weight over the moduli space and
obtain an exact formulation of the partition function. In section 4, we discuss the obtained
partition function and comment upon the relation between the Goldstein–Petrich method
and the Becchi–Rouet–Stora (BRS) quantization of the gauge field [31] and a critical point
of this mode.

2. Classical shape of elastica

Here we review a shape of a closed elastica in two-dimensional space [10–12, 32]. We
denote byC a shape of the elastica embedded in the projective complex line (or the Riemann
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sphere)CP 1 and byX(s) its affine vector

S1 3 s 7→ X(s) ∈ C ⊂ CP 1 X(s + L) = X(s) (2.1)

whereL is the length of the elastica. The Frenet–Serret relation will be expressed as

exp(iφ) = ∂sX ∂s exp(iφ) = ik exp(iφ) (2.2)

whereφ is a real-valued function ofs and k is the curvature of the curveC, k := ∂sφ:
φ(s +L) = φ(s) andk(s +L) = k(s). Here we have chosen the metric of the curve as the
induced metric from the natural metric ofC ⊂ CP 1; by this choiceφ is real valued.

As Daniel Bernoulli suggested to Euler [1], the energy integral of the elastica is given
as

E =
∫ L

0
ds k2 (2.3)

and the shape of the elastica is realized as its stationary point. Here we assume that
the elastica does not stretch and preserves its infinitesimal length; since deformation of
the elastica is regarded as one parameter transformation, the assumption implies that the
transformation is isometric [10–13, 32]. Thus we refer to this condition as the isometry
condition.

Following the minimal principle, we derive the differential equation. We consider the
variation of the curveC → Cε under the isometry condition [8–11]

X→ Xε = X + ε(U1+ iU2) exp(iφ) U1(L) = U1(0) U2(L) = U2(0) (2.4)

whereεU1 andεU2 are infinitesimal real-valued functions.
Since the infinitesimal length of the curve is given as

ds2 = dX̄ dX = ∂sX̄∂sX ds2 (2.5)

the corresponding length of theCε

dX̄ε dXε = (1+ ε((∂s − ik)U1− i(∂s − ik)U2))(1+ ε((∂s + ik)U1+ i(∂s + ik)U2)) ds2

= (1+ 2ε(∂sU1− kU2)) ds2+O(ε2) (2.6)

must be ds2 moduloε2 due to the isometry condition. Hence we obtain the relation

∂sU1 = kU2. (2.7)

The tangential angle ofCε is given as

∂ε = 1

i
log∂sXε

= φ + ε(k + ∂sk−1∂s)U1. (2.8)

Its curvature is expressed as

kε = exp(−iφε)∂
2
s Xε

= k + ε∂s((k + ∂sk−1∂s)U1). (2.9)

Finally, we obtain the variation of the energy functional∫ L

0
ds k2

ε =
∫ L

0
ds

(
k2+ ε

(
1

2
∂s(k

2)+ ∂s ∂
2
s k

k

)
U1

)
+O(ε2). (2.10)

From the variational equation

δE[kε]

δ(εU1)
= 0 (2.11)
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the nonlinear differential equation is given as the equation of the shape of the static elastica

∂s

(
1

2
k2+ ∂

2
s k

k

)
= 0 (2.12a)

and thus

a1k + 1
2k

3+ ∂2
s k = 0 (2.12b)

wherea1 is the integral constant. This equation is known as the static MKdV equation in
soliton theory if we derivate it bys again.

First, we note that (2.12a, b) are also equations of the energy functional [10, 11]

E =
∫ L

0
ds(k2+ A1 cosφ + A2) (2.13)

where the second term means the constraint for the relative position ofX(0) − X(L) and
the third one is for the total lengthL [7, 10, 11, 13]. The sufficiency of the third term is
trivial. From (2.9), the second term becomes

A1

∫
ds cos(φε) = A1

∫
ds

(
cos(φ)− ε

(
kU1+ ∂s ∂sU1

k

)
sin(φ)

)
+O(ε2) (2.14)

and by partial integration, the second term on the right-hand side vanishes for anyU1. This
vanishing occurs owing to the compatibility between the MKdV equation and the static
sine–Gordon equation

∂2
s φ + A1 sinφ = 0. (2.15)

(2.15) comes from the natural variation ofφ of (2.13) [1, 4, 7, 10, 11, 13]. Hence (2.12a, b)
can be also regarded as the stationary point of (2.13). In fact it is known that solutions of
(2.12a, b) are in agreement with those of (2.15) as will be shown later. It should also be
noted that (2.13) is theσ -model with the topological term and was essentially discovered
in the 18th century. In other words, the system of the elastica can be regarded as a SO(2)
principal bundle overS1 and the cosine term in (2.13) is a local version of the fundamental
groupπ1(S

1) = Z [6].
Solutions of (2.12a, b) are completely expressed by the elliptic functions. Multiplying

∂sk and integratings [4, 11, 13, 14, 32, 33], we obtain the relation

(∂sk)
2 = − 1

4(k
4− a1k

2+ a2). (2.16)

Introducing the quantities,β2 − β2 := a1, l = √β1/(β1+ β2), andβ3:=√β1/β2/2, k is
expressed by the Jacobi elliptic function [34]

k =
√
β1 cn(β3s, l). (2.17)

Transformation from the solutions of (2.12a, b) to those of (2.15) is given by the identities
of the integrand in the elliptic integral between trigonometric function and polynomial
expressions [34]. After integrating the differential equations, we obtain [1, 4, 10, 11, 13, 33]

X(s) = 2

β3
E(am(β3s), l)− s − i

2l

β3
(cn(β3s)− 1) (2.18)

whereE(·, l) is the incomplete elliptic integral of the second kind and am is the Jacobi
amplitude function [34]. Due to the closed condition

X(0) = X(L) (2.19)

there is an eight-figure shape [1, 4, 11, 13, 16, 33]; the modulus of the elliptic function is
l = 0.908 909. . . and the ratio of the fundamental parameters isK ′/K = 0.709 46. . . .
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Thus, in the set of solutions of (2.12a, b), there are only two types of closed elastica in
C up to the translation of their centroid, global rotation and scaling; circlek = 2π/L and
eight-figure shape. Here, though we have chosen solutions such ask = 2π/L, there also
exist other solutions like{k = 2πn/L | n > 1}.

On the other hand, by taking the limitL→∞ and by considering ones inCP 1, more
kinds of closed elastica inCP 1 are allowed. These solutions were classified by Euler in
the 18th century [1, 4].

In this paper the set of shapes of elastica obtained as solutions of (2.12a, b) will be
denoted asScls

Scls = {C | C is a solution of(2, 12a, b)} (2.20)

and the energy functional is expressed by

Ecls[C] =
∫ L

0
ds k2 C ∈ Scls. (2.21)

3. Statistical mechanics of elastica

In this section, we consider the statistical mechanics of a closed elastica and investigate
its behaviour in a heat bath. We continue to allow the crossing of the elastica even in
two-dimensional space. It is set up so that there are many independent laboratory dishes in
which large polymers like DNA individually exist one by one. A looped elastica is in the
liquid whose temperature is determined and whose viscosity is very large. The liquid is a
kind of heat bath. Then the kinetic energy of the elastica is suppressed in equilibrium state
due to dissipation but owing to the fluctuation by temperature noise, the elastica sometimes
jumps from a quasi-stable state to other quasi-stable states.

The partition function of the elastica is given as in [24]

Z =
∫
DX exp

(
− β

∫ L

0
ds [k2]

)
. (3.1)

Here we prohibit a change of the local length of the elastica, the isometry condition being
maintained. In [24], it was written that if one also dealt with the kinematic term, it would be
decoupled with the potential term (2.3). However, as we employ the isometry condition, this
statement cannot be guaranteed because the kinetic term is also restricted by the isometry
condition [8, 9] and is strongly coupled with the shape of the elastica.

3.1. Quasi-classical motion

By the quasi-classical method in path integration [35, 36], we evaluate the partition
function (3.1). We expand the affine vector around an extremum point of the integral

X = Xqcl− ε(u1(s)+ iu2(s)) exp(iφqcl)+O(ε2) (3.2)

whereε is an infinitesimal parameter,ε ∝ 1/
√
β andφqcl is the tangent angle of the quasi-

classical curve of elastica.Xqcl is an affine vector of the extremum point of the functional
integral and will be determined later. In the path integral, terms with higher orders ofε

also play an important role and thus we must pay attention to the higher perturbations ofε

here. Hence we will assume thatX is parametrized by a parametert and that the difference
betweenX andXqcl can be expressed by

X(s, t) := eε∂tXqcl(s, t) ε∂tXqcl = X −Xqcl+O(ε2). (3.3)
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Since for an analytic functionf (x), ea∂x f (x) = f (x + a), X(s, t) can be expressed as
X(s, t) = Xqcl(s, t+ε), where the directiont differs from that ofs; the domain of functional
integration (3.1) deviates from the domainS1 of the classical map (2.1). Then (3.2) becomes

−∂tXqcl = (u1+ iu2) exp(iφqcl) u1(L) = u1(0) u2(L) = u2(0). (3.4)

This is virtual dynamics of the curve [8–10]. As well as the argument in section 2, due to
the isometry condition, we require [∂t , ∂s ] = 0 for X. Then the isometry condition exactly
preserves, ds ≡ dsqcl by the definition (3.3). This isometry relation should be compared
with (2.6) which is isometry moduloε2. It should also be noted that althoughε is constant,
dependence of the variation upon the positions is given though (3.4) andua(s), a = 1, 2.
Thus (3.3) is not a trivial deformation in general.

We have the relation

−∂t exp(iφqcl) = ((∂su1− u2kqcl)+ i(∂su2+ u1k)) exp(iφqcl). (3.5)

Noting thatφ andu are real valued, we obtain (2.7) again from the first term and solve the
differential equation betweenu1 andu2 [8, 10]

∂su1 = kqclu2 u1 =
∫ s

ds u2kqcl =: ∂−1
s u2kqcl. (3.6)

Here ∂−1
s has a parameterc ∈ R as an integral constant and coincides with the pseudo-

differential operator.
Then (3.5) is reduced to the equations

∂tkqcl = −�u2 � := ∂2
s + ∂skqcl∂

−1
s kqcl. (3.7)

From (3.3) and [∂t , ∂s ] = 0 for X, φ is calculated as

φ(s, t) = φqcl(s, t + ε) = eε∂t φqcl(s, t) = φqcl+ ε∂tφqcl+ 1

2!
ε2∂2

t φqcl+ · · · . (3.8)

Then notingk2(s, t) = k2
qcl(s, t + ε), the energy functional is expressed as∫

k2 ds =
∫
(k2

qcl+ 2εkqcl∂tkqcl+ ε2((∂tkqcl)
2+ kqcl∂

2
t kqcl)+ · · ·) ds

=
∫
(k2

qcl− 2εkqcl�u2+ ε2((∂tkqcl)
2+ kqcl∂

2
t kqcl)+ · · ·) ds

=:Eqcl+ δ(1)E + δ(2)E + · · · . (3.9)

Using (3.6), if we perform the functional derivative ofE in u1, we obtain the classical
equations (2.12a, b) again.

Since the quasi-classical configuration is realized as the extremum point of the functional
space, we must impose the relation

δ(1)E = 0. (3.10)

According to the philosophy of this method, we must sum the weight function over all
extremum points. Since they are extremum rather than stationary points, they need not be
realized as classical equations like (2.12a, b).

It has been assumed that the deformation is characterized by one parametert . However,
in the mode analysis of a linear deformation system, the coefficients of each mode govern
the classification and the magnitude of the deformation. When one takes notice of one of
the modes and its coefficient as a parameter of the system liket of this argument, we can
consider a set of the modes and their coefficients and sum them. Although the elastica system
is not linear, there is no requirement that we must use only one parametert to describe
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this system. In the sense of the statistical mechanics (and also quantum mechanics) one
must sum the weight function over events if the possibility of occurrence of the events can
be considerable regardless of the magnitude of its contribution; when it does not affect the
total system enough, the degree of affection is built into the weight function. Thus, one
must search for all possible extremum points as a duty if one wishes to calculate a partition
function.

Furthermore, in the path integral method, the entropy as a statistical effect appears as a
volume of the function space; in a microcanonical system at energyE0, the entropyS of the
system is defined asS := logZ|E=E0 and can be regarded as the logarithm of the volume
of the function space. From primitive consideration, the dimension of the volume of the
functional space in the statistical physics is related to the degrees of freedom corresponding
to E0.

Since the deformation parameter determines the functional space of this system, as will
be shown later, and the degree of freedom of the elastica is not finite, its dimension need
not be one. In other words, the search for the extremum point (3.12) must take precedence
over paying attention to the dimension of the parameter space.

Noting the relation (3.6) and the above arguments, if�u2 could be regarded as another
functionu′2 of the variation of the normal direction in (3.2), we might find the relation∫

ds kqcl�u2 ∼
∫

ds kqclu
′
2 =

∫
ds ∂su

′
1 = 0. (3.11)

Accordingly, we introduce the sequence for mathematical timest := (t1, t3, t5, . . . ,

t2n+1, . . .) so that (3.11) is satisfied. We redefine the fluctuation (3.2) and introduce an
infinite parameter family, which can sometimes become a finite set as we show later

X = e(1/
√
β)
∑

n=0 δt2n+1δt2n+1Xqcl = Xqcl+ (1/
√
β)
∑
n=0

δt2n+1∂t2n+1Xqcl+O(1/β). (3.12)

Hereε was replaced with(1/
√
β)δt2n+1 and∂t2n+1Xqcl is expressed as

−∂t2n+1Xqcl = (u(n)1 + iu(n)2 ) exp(φqcl) u
(n)

1 = ∂−1
s kqclu

(n)

2 u
(n)

2 = �nu(0)2 (3.13)

with integral constantsc vanishing forn > 1. u(0)2 is an appropriate function ofs.
Then the variation of the energy functional is calculated as∫
k2 ds =

∫ (
k2

qcl+ (2/
√
β)
∑
n

δt2n+1kqcl∂t2n+1kqcl

)
ds +O(1/β)

=
∫ (

k2
qcl− (2/

√
β)
∑
n

δt2n+1kqcl�u
(n)

2

)
ds +O(1/β)

=
∫

ds k2
qcl− (2/

√
β)
∑
n

δt2n+1

∫
ds ∂su

(n+1)
1 +O(1/β)

=
∫

ds k2
qcl+O(1/β). (3.14)

Thus, for the variations along the directions, the energy of the system is an invariant modulo
1/β. Without work, we can move it for these directionsδt2n+1∂2n+1X [10, 37, 38].

However, for this sequence, the infinite differential equations appear [8, 9]

∂t2n+1kqcl = −�nu(0)2 . (3.15)

The recursion equations (3.13) are determined by the initial conditionu
(0)
2 . By following

the theory of the quasi-classical method of the path integral, this sequence must contain
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the classical equations (2.12a, b). On the other hand, for a close elastica, there is a trivial
continuous symmetry which is the translation of the coordinate systems along the curveC.
Hence (3.15) should also include such translation symmetry. Of course, they contain other
equations as quasi-stable shapes as shown later.

Although there might be other choices, we select minimal subspaces of the functional
space in order to satisfy the above requirements. This choice will be justified later. As we
performed the variational computation in section 2, we choose the initial state as

u
(0)
2 = 0 u

(n)

2 = �n∂skqcl for n > 1. (3.16)

Then the minimal set of the virtual equations of motion, which satisfy the physical
requirements, is

∂t2n+1kqcl = −�n∂skqcl ∂t2n+3kqcl = �∂2n+1kqcl. (3.17)

First, several equations andu are given as follows

u
(0)
1 = 1 u

(0)
2 = 0 (3.18a)

u
(1)
1 = 1

2k
2
qcl u

(1)
2 = ∂skqcl (3.18b)

u
(2)
1 = 3

8k
4
qcl− 1

2(∂skqcl)
2+ k∂2

s kqcl u
(2)
2 = 3

2k
2
qcl∂skqcl+ ∂3

s kqcl (3.18c)

n = 0 : ∂t1kqcl+ ∂skqcl = 0 (3.19a)

n = 1 : ∂t3kqcl+ ∂3
s kqcl+ 3

2k
2
qcl∂skqcl = 0 (3.19b)

n = 2 : ∂t5kqcl+ ∂5
s kqcl+ 15

8 k
4
qcl∂skqcl+ 5

2(∂skqcl)
3+ 5

2k
2
qcl∂

3
s kqcl

+10kqcl∂skqcl∂
2
s kqcl = 0. (3.19c)

Since� is identified with the Gel’fand–Dikii operator for the MKdV equation, (3.17)
is regarded as the MKdV hierarchy andu(n)1 are Hamiltonians of the MKdV hierarchy
[8–10, 39].

Next, we consider the solutions of these equations. (3.19a) means the freedom of choice
of the origin ofs and has only a trivial solutionk(s− t1); t1 is the origin ofs. Hence (3.16)
contains the trivial symmetry. Since we are concerned with nontrivial deformation, we must
consider only the properties of (3.17) forn > 1. The derivative of (2.12b) can be described
as

c∂sk = �∂sk. (3.20)

By t3 = s/c, this is identified withn = 1 in equation (3.19b). Here∂sk of the solutions of
(2.12b) are interpreted as the eigenvectors of� andc is an eigenvalue of the operator�.
Thus (3.17) becomes

∂t2n+1k = −�n∂sk = −cn∂sk. (3.21)

Hence the solutions of (2.12a, b) can be solutions of all the equations in (3.17). In fact, for
a stable solutionk = constant, allu(n)2 ≡ 0 and thus all equations in (3.17) are satisfied.

It should be noted that (3.21) arises from the fact thatu
(m)

1 agree with the Hamiltonians
of the MKdV hierarchy and are regarded as conservation quantities fornth equations of
n < m [39]. Hence using soliton theory, any solutions of (3.19b) are solutions of higher
equations in (3.17)n > 2. Due to the requirement of the quasi-classical solutions, any
solutions must satisfy all ofnth equations (n > 1) in (3.17). Hence, we may deal with only
the solutions of the MKdV equation (3.19b) as the quasi-classical solutions of this system.

Then the sequence (3.17) fulfils the physical requirements. In other words, the solution
space of the MKdV equation (3.19b) is the minimal space containing the classical solutions
and translation symmetry and fulfils the quasi-stable condition (3.10).
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Since for the variations along the directionst of (3.17), the energy of the system (3.14)
is invariant, the fluctuation of the quasi-classical shapekqcl(s, t2n+1) should be regarded as
(generalized) Jacobi fields of the Goldstone mode [37, 38] even though they do not obey a
linear differential equation in general.

Here we remark that the MKdV hierarchy naturally appears by physical requirements
in the functional integral. It is very surprising because the MKdV hierarchy has infinite
Hamiltonians and time axes; in classical kinetic theory, these quantities cannot be physically
interpreted. Furthermore, it should be contrasted with the works related to space curves in
[8, 9, 33], in which the authors chose (3.16) by hand without any physical requirement.

Due to the fluctuation of the heat noise, the equation of the elastica in a heat bath obeys
the MKdV equation (3.19b) rather than the static MKdV equation (2.12a, b). Let the set
of solutions referred as

Sqcl = {C | C is a solution of(3.19b)}. (3.22)

Of courseSqcl containsScls. In Sqcl, various shapes appear as the quasi-classical solutions
in a heat bath. For example, there should exist a deformed circle as a solution of (3.19b)
because (3.19b) is of an initial value problem. As another example, there are other
topological solutions of the different sectors of the fundamental group

1

2π

∫
dφqcl ∈ Z. (3.23)

3.2. Moduli of closed quasi-classical elastica

Here we go back to compute the partition function (3.1), which was formally defined.
First, the problem arises how (3.1) should be interpreted. According to the philosophy
of the canonical ensemble, the partition function should be calculated by the sum over
all distinguishable and possible curves satisfying the isometry condition with Boltzmann
weight. In the calculus, a different topological class of (3.23) will be summed over.

However, the partition function (3.1) naturally diverges because the energy function is
invariant for the affine transformation, i.e. for the translation and the global rotation. Fixing
C, if we denoteX as

X(s) = Xg +Xr(s)
∫

ds Xr(s) = 0 (3.24)

whereXg is the centroid of the curveC, then the measure of the partition function can be
rewritten as ∫

DX e−βE =
∫

DXg

∫
DXr(C) e−βE(C). (3.25)

The
∫

DXg is the volume of the base spaceCP 1 and diverges. Including the rotational
symmetry and the inner translation symmetrys → s− t1, we redefine the partition function
which is divided by the volume of the affine transformation of the base space and length of
the elastica

Zreg :=
∫

DX e−βE

vol(Aff (CP 1))L
. (3.26)

Then we concentrate on the shape of the elastica. We must classify the shape of the
elastica and sum over all possible shapes. In other words, we must investigate the moduli
space of the quasi-classical elastica

Mqcl := Sqcl

Aff (CP 1)× S1
. (3.27)
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First, we consider the moduli space of the MKdV equation. The moduli of the MKdV
equation was investigated as the KP-hierarchy using Sato theory [40–42]. (By the Miura
map, the MKdV hierarchy is transformed to the KdV hierarchy and the KdV hierarchy is
a subset of the KP hierarchy [41].) The moduli of the MKdV equation is classified with
the genusg ∈ N of the hyperelliptic Reimannian surface (hyperelliptic curve)Rg, which is
the finite gap energy manifold (Bloch band spectrum) of the wavefunctions in the inverse
scattering method of the MKdV equation [40–46]. Hence the moduli of the closed elastica
is also classified by the genus

Mqcl =
∐
g

M
(g)

qcl. (3.28)

We will call the genus of the MKdV equation with the boundary condition genus of the
elasticag. In fact, the classical solutions of (2.12a, b) and (3.20) correspond to the shapes
of elastica of genus zero and one, because these energy manifolds appearing in its inverse
scattering method exhibit a Riemannian sphere and an elliptic curve, respectively [43].
(It should be noted that even in the quasi-classical equation, the solutions of the circle
and the eight-figure are unique up to homothety (similarity transformation) forg = 0 and
g = 1, respectively.) Using our knowledge of the properties of the universal Grassmannian
manifold (UGM), we will consider the moduli of the closed elastica.

First, we consider the simplest case (g = 0), a circlek = 2πn/L, n > 1. In (3.9), the
quasi-classical action of these circles is expressed as

Eqcl[Cn] = 2πn2

L
k(Cn) = 2πn

L
. (3.29)

Hence for largen, the Boltzmann weight exp(−βEqcl[Cn]) rapidly decreases. This situation
is preserved for the elastica of higher genus.

Next, we consider elastica of genus one and answer the question why the number of the
genus one solutions of closed elastica is only one, i.e., eight-figure shape, up to scaling. The
moduli of the compact Riemannian surface of genus one (or elliptic curve) is conventionally
expressed as (1, τ ), τ ∈ M̃R1

M̃R1 = H+/PSL(2,Z)
H+ := {m ∈ C | Im (m) > 0}
PSL(2,Z) :=

{(
a b

c d

) ∣∣∣∣ad − bc = 1, a, b, c, d ∈ Z
}/

(±1). (3.30)

However, there is a dilatation freedom (K̃, K̃ ′ := K̃τ ) and thus we will denoteMR1 :=
R>0× M̃R1 to include the freedom:K̃ ∈ R>0 := {x ∈ R | x > 0}. The Jacobi variety of an
elliptic curve is given asJ1,m := C/(K̃Z ⊕ K̃ ′Z) for m := (K̃, K̃ ′). Sinceφqcl is a real
analytic function ofs ∈ S1 = R/LZ, its domain embedded inJ1,m must be real. Thus only
one-dimensional parametrization ofφqcl, S1 ⊂ J1,m, is allowed, which is a direct line inJ1,m

and passes its origin, becauseJ1,m is a complex one-dimensional manifold. Since the moduli
was divided by PSL(2,Z), there are PSL(2,Z) choices how suchS1 is embeddedJ1,m. We
choose a function with periodL/n, n ∈ N := {n ∈ Z | n > 1}, φqcl(s +L/n) = φqcl(s). By
the periodicity ofφqcl(s), we fix K̃ for each embedding ofS1 into J1,m, then the moduli of
the MKdV equation with periodL is MR1×N×PSL(2,Z)×R>0/R>0, which is equivalent
with N×H+.

On the other hand, the closed condition (2.19) inCP 1 restricts the moduli of the elastica.
We introduce a real analytic map

f1 :
MR1 × N× PSL(2,Z)× R>0

R>0
≈ N×H+ → CP 1
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f1(m) = X(L)−X(0). (3.31)

BothH+ andCP 1 are complex one-dimensional spaces. The moduli of closed elastica with
genus one is given as the inverse image of the zero point off1

M
(1)
qcl = f −1

1 (0). (3.32)

Due to the analyticity of the mapf1, M
(1)
qcl is a zero-dimensional manifold. Thus the kind of

shapes are countable and due to the uniformity, there is only one solution for eachn ∈ N.
In ordinary computations [4, 10–14, 16, 32, 33], by reparametrizingS1 as R/(L/n)Z,

one starts withC/((L/n)Z ⊕ K ′Z), n ∈ N andK ′ ∈ H+ without dividing PSL(2,Z) and
searches for the point satisfying the closed condition (2.19).

Similarly properties of the moduli of the closed elastica with genusg(>1) will be
investigated. It is well known that by the Sato theory, a characteristic of the KdV hierarchy
in the KP hierarchy is to characterize its energy manifold in the inverse scattering method as
a hyperelliptic curve in general (compact) Riemannian surfaces [40–42]. The Miura maps
from the MKdV hierarchy to the KdV hierarchy are bijective. Thus we deal only with the
hyperelliptic curves in this paper. First, we denote the moduli of the hyperelliptic curve
of g(>1) as M̃Rg . Its element is conventionally expressed as (Ig, Tg), whereIg and Tg
are g × g matrices;Tg = (τ 1, . . . , τ g) = (τij ) and Ig = (e1, . . . ,eg) is the unit matrix.
As we did in theg = 1 case, we will deal withK̃(Ig, Tg), K̃ ∈ R>0 rather than (Ig, Tg)
itself. It is known that the dimension of the moduli of the hyperelliptic curves,M̃Rg , is
2g− 1. Then we will also introduce a real 2g-dimensional lattice for a point of the moduli
m ∈MRg := R>0× M̃Rg [44–46]

0m =
{ g∑
j=1

mjK̃ej +
g∑
j=1

nj K̃τj | (m1, mj ∈ Z)
}

(3.33)

and the Jacobi varietyJg,m := Cg/0m. If we determine a pointm in MRg , we can uniquely
construct the Jacobi variety,Jg,m := Cg/0m. From soliton theory, if the coordinates of
Jg,m as a real manifold are expressed bytKP = (t1, t2, t3, t4, . . . , t2g ) [40–42], its subset
with odd indicestg := (t1, t3, . . . , t2g−1) can be identified with the part oft in (3.12). This
identification can be guaranteed by the Krichever construction of the solution of the KP
hierarchy [44] and Sato theory [40–42]. By the Krichever construction, it is known that
each parametrizationtn ∈ tKP is a direct line passing the origin in the Jacobi variety. (3.17)
and (3.19) are reduced to the linear differential equations in the Jacobi variety [44–46]. (Thus
(3.17) can be recognized as the Jacobi equation of the Jacobi field of the system (3.14).)

Since the moduli of the hyperelliptic curves has also been divided by a discrete group
Sp(g,Z) [44] like PSL(2,Z) of theg = 1 case, for fixingm ∈MRg , there areN×Sp(g,Z)
ways to embedS1, as a period ofφ, into Jg,m. The number of ways are equivalent to the
cardinal ofN× Sp(g,Z) as a set. As we impose its periodicity ofL/n (n ∈ N) on S1, the
dilation parameterK̃ is determined. Let such moduli space be denoted as

MRg,S1 :=MRg × N× Sp(g,Z)/R>0. (3.34)

By choosing a point of the moduli spaceMRg,S1, ag×g lattice0m,S1 is uniquely determined
and the Jacobi variety is given as

MRg,S1 → {0m,S1} Jg,m,S1 := Cg/0m,S1. (3.35)

We will fix a point of the modulusm ∈MRg,S1 for a while. From the properties of the
MKdV hierarchy,φqcl is a real analytic function oftg. As we can expand it around a point
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tg using the properties of its real analyticity

φqcl(t
′
g) =

∑
n0,...,ng

an0, . . . , n1(t
′
1− t1)n0(t ′3− t3)n1 . . . (t ′2g−1− t2g−1)

ng (3.36)

tg must be a system of real parameters inJg,m,S1. By analytic continuation,tg can be locally
complexified. On the other hand, the Jacobi variety has a canonical complex structure

J : Jg,m,S1 → Jg,m,S1 J 2 = −1 (3.37)

which consists of its affine (vector) structure. By the structureJ , there is a set of real
g-dimensional submanifolds{6g,m,S1} which includes the orbit ofs(∈ S1) as its one-
dimensional submanifold. Due to the analyticity ofφqcl over Jg,m,S1, this complexification
of (3.36) cannot contradict with the complex structureJ . Thentg can be regarded as an
element of6g,m,S1. We will refer to such embedding as

σ0 : 6g,m,S1 ↪→ Jg,m,S1 (3.38)

and the set ofσ0 is expressed as Em0(6g,m,S1, Jg,m,S1).
Then we can construct the fibre structure for Em0(6g,m,S1, Jg,m), because for a

way to such embedding, there is the trajectory space6g,m,S1/S1 as fibre space, where
(t3, . . . , t2g−1) ∈ 6g,m,S1/S1. We refer to the fibre bundle as=m

6g,m,S1/S1 −→ =m
↓πtraj

Em0(6g,m,S1, Jg,m,S1).

(3.39)

This fibre space also depends upon the point of the moduli space of the Riemannian surfaces
MRg,S1. Hence, the moduli of the periodic solutions ofφqcl(s, tg), which is written as

M
(g)

period, also has a fibre structure

=m −→ M
(g)

period
↓πperiod

MRg,S1.

(3.40)

For each pointm ∈MRg,S1, the fibre bundle=m (3.39) stands up as a fibre ofM
(g)

period.
By the closed condition, we must restrict the moduli space. Here we consider a real

analytic map like (3.31)

fg : M
(g)

period→ CP 1

fg(µ) = X(L)−X(0). (3.41)

Consequently, we obtain the moduli of the closed elastica, which is expressed as

M
(g)

qcl = f −1
g (0) ⊂M

(g)

period. (3.42)

Since the image offg is a real two-dimensional manifold, forg > 2, dim(M(g)

qcl) > 1 and

M
(g)

qcl is measurable.
For simplicity, we introduce the following notation

M
(g)

tm=0 := πtraj(M
(g)

qcl)

X
(g) 3 n : M

(g)

tm=0→M
(g)

tm=0,n or M
(g)

tm=0 = ⊕n∈X(g)M(g)

tm=0,n

for (n,m) ∈M
(g)

tm=0 6̃m,n := π−1
traj(n,m) (3.43)
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whereX(g) is the countable part ofM(g)

tm=0 andM
(g)

tm=0,n, the restriction ofM(g)

tm=0 for a point

n ∈ X(g), is the measurable part. Herẽ6m,n has coordinates(t3, . . . , t2g−1) =: tm. Hence,
there is a map from the moduli to the shape of the elastica

h : M
(g)

qcl 3 (n,m, tm) 7→ C(n)m (t(n)m ) ⊂ CP 1. (3.44)

For a perturbative deformation like distortion to an ellipse from a circle, the energy
manifold in the inverse scattering method has infinite gaps (or genera) in general. Thus
such deformation is expressed in the moduli ofg → ∞ and, due to the integrability of
the MKdV equation, the deformation can be predicted like an harmonic oscillator around a
stable point. This picture is supported by the linearized method of the nonlinear equation
and is also built into the above argument of the limitg→∞.

3.3. Partition function

As we finish classifying the solution space formally, we consider the fluctuation of the
elastica again. It should be noted that there is an upper limit of the sequenceu

(n)

2
corresponding to the genus of the elastica. If forn = N ,

�u
(N)

2 ≡ λu(N)2 λ ∈ R (3.45)

like (3.20), thenδt2(N+m)+1 ∝ δt2N+1 for m > 0 because of (3.12) and

−∂t2(N+m)+1u
(N+m)
1 = kqclu

(N+m)
2 = kqcl�

mu
(N)

2 = λm∂t2N+1u
(N)

1 . (3.46)

Accordingly there is no requirement for other fluctuation parametersn > N because these
fluctuation vectors are linearly dependent. The sequence of (3.12) should be truncated
according to the philosophy of the canonical ensemble. Thus we denote such a minimal
integer, which is a function of the solution, as

ind0 : C → N(C) ∈ Z. (3.47)

However, from soliton theory [40–42] and the above argument, forC ∈M
(g)

qcl, we conclude
that ind0(C) = g. Avoiding meaningless divergence, we will replace the infinite series in
(3.12) with the finite sum from 1 tog depending upon the shape of elastica.

Since the direction ofδt1 is along the tangential direction of the elasticaCqcl, its effect
has been treated as the integral ofδt1 ∝ s in (3.26). On the other hand,δt2n+1(n > 1)
includes the normal direction fluctuation and we must integrate the Boltzmann weight over
δt2n+1 space depending upon the genus of the elastica. Linear independence of these bases
are guaranteed by the above truncation.

Then, for a curveC ∈M
(g)

qcl, the heat fluctuation of higher order is expressed as

δ(n)E[C, δt2m+1] =
∑

0<mi6g

1√
β
n

n∏
i

(δt2mi+1)

∫
ds

n∏
i

(∂t2mi+1)k
2. (3.48)

Here themi = 0 part vanishes due to the periodicity∫
ds ∂s

( n−1∏
i

(∂t2mi+1k
2)

)
= 0. (3.49)

On the other hand, if the set{mi} does not containmi = 0 as a component, the integral
commutes with these derivatives∫

ds
n∏
i

(∂t2mi+1)k
2 =

n∏
i

(∂t2mi+1)

∫
ds k2. (3.50)
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Since
∫
k2 ds is invariant for the timet2n+1(n > 0) development from the soliton theory,

(3.50) vanishes. Hence, we obtain that all higher-order fluctuations vanish

δ(n)E[C, δt2m+1] ≡ 0 for n > 0. (3.51)

In other words, the effect of heat fluctuation is given only through the energy functional
of the quasi-classical motions and their volume. As mentioned before, the volume of a
functional space is related to the entropy of the system. The functional space with the same
energy is given as trajectory spaces oftm. Since the problem of the MKdV equation is
an initial value problem intm, we can choose any regular curve satisfying the boundary
condition as an initial condition and then the set of trajectories of the solution of the MKdV
equation exhibits the functional space, in which the elements have the same value as the
energy. In other words, all conformations of the elastica can be classified by the MKdV
equation and any conformation exists in the solution space of the MKdV equation, as least,
as an initial condition. This means that the extension from one parametert to infinite
parameters and the choice of the minimal set (3.16) are justified and that they uniquely
lead to the correct result. By investigation of its moduli, we sum the weight e−βE over all
conformations or the moduli of the elastica.

Since for a quasi-motion of genusg, the curvature determined from (3.3) is precisely
given as

k(s, t1, t2, . . . , t2g−1) = kqcl

(
s, t1+ 1√

β
δt1, t2+ 1√

β
δt2, . . . , t2g−1+ 1√

β
δt2g−1

)
(3.52)

we must integrate the Boltzmann weight exp(−β ∫ ds k2) over all δt exceptδt1. Using the
translation symmetry and freedom of the integration variable, we rewritet2n+1 = δt2n+1/

√
β

and replace the general curvaturek with kqcl.
Consequently, we obtain an explicit form of the regularized partition function (3.26),

which is expressed by

Zreg[β] =
∑
g

∑
C∈M(g)

qcl

(exp(−βEqcl[C]))

=
1∑
g=0

∑
n∈X0

g

(exp(−βEqcl[C
(n)]))+

∞∑
g=2

∑
n∈X(g)

∫
M

(g)

tm=0,n

dm

∫
6̃m,n

( g∏
n=2

dt2n−1

)
× exp(−βEqcl[C

(n)
m (t(n)m )]). (3.53)

This is the exact form of the partition function (3.1) of the non-stretching elastica without
divergence. In the second term, there appears integration of the type

∫
dx e−βf (x). Thus, it

is expected that the prefactor of the second term begins with the negative power ofβ. For
largeβ, the second term is less than the first term. Hence, for the zero-temperature limit
β → ∞, the second term disappears and only the contribution of the genus zero and one
survives. Noting that the moduli of the quasi-classical elastica withg 6 1 is equivalent to
that of the classical, we obtain

lim
β→∞

Zreg[β] = max
C∈Scls

exp(−βEcls[C]) = exp

(
− β min

C∈Scls

Ecls[C]

)
. (3.54)

Depending upon the boundary condition, the classical solutions appear as miminal points of
the partition functionZreg[β]. Hence, the partition function (3.53) does not contradict the
discovery of Daniel Bernoulli [1].
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4. Discussion

It is worthwhile noting that due to the isometric condition, we have derived the MKdV
hierarchy. In the elastic body, the Lagrangian coordinate system should be employed rather
than the Eulerian coordinate system when we use the terms of fluid mechanics. In elastic
body theory by marking some points on an elastic body and by estimating the variation
of distance among the marking points, which is measured using the induced metric, the
force will be locally evaluated as a linear response for its certain deformation. The marking
points correspond to the Lagrangian test particle in the language of fluid mechanics. On
the other hand, as we have used the metric induced from the base space and calculated
the deformation, our calculation corresponds to the Eulerian one. Here it should be noted
that if one uses the induced metric or Eulerian picture, any stretching (physical) curve
can be regarded as a non-stretching (mathematical) curve; it is a trivial trick between the
Lagrangian picture and Eulerian picture and such recognition has few physical meanings.
If stretching has a physical meaning like an elastic body, the Eulerian picture does not
exhibit the dynamical situation and unless stretch plays an important role like the boundary
curve of a binary fluid, dealing with stretch has less physical meaning. Accordingly, the
isometric condition employed plays the central role in this scheme. In other words, in the
above computation, the reason why we could physically use the Eulerian picture even in
the elastic body problem is due to this isometry condition.

It should be also noted that even though there appears a nonlinear differential equation
in this scheme, we have used the energy functional which is locally given in the framework
of the linear response of the force for the deformation [4, 11]; if one uses the nonlinear
energy functional, we must evaluate it from basic elastic body theory because it is beyond
the ordinary elastic body theory. It is remarked that due to the bilinearity of the energy
functional, which is established in the framework of the ordinary elastic body theory, we
were able to find the exact partition function (3.53) in this model.

Furthermore, the origin of the MKdV hierarchy in [8, 9, 33] was artificial and was not
physically supported. If one physically sets up a problem of time development of the elastica
for real physical time, we conclude that its motion is not governed by the MKdV equation
nor the MKdV hierarchy in general [10–14]. However, in this paper, we have obtained
the MKdV hierarchy from the physical requirement and a (mathematical) parameter time
δt2n+1 appears of variational direction as pointed out in [10]. In other words, by virtue of
the novel investigation of the properties of the isometric curve of Goldstein and Petrich
[8, 9], we conclude that the virtual dynamics is realized as a thermal fluctuation of an
elastica in a heat bath. Due to the isometry condition, these equations become nonlinear
differential equations. In the linear differential equation such as the harmonic oscillator, the
mode, which is determined by the global feature of the system, is represented by a vector
of momentum space. As well as mode analysis of the linear system, these parameters
t2n+1 exhibit the global deformation of the elastica due to thermal fluctuation and they are
expressed as vectors of the Jacobi theory.

It is remarked that the obtained partition function (3.53) differs from that in [24],
which is obtained by summing the weight function over the conformation including non-
isometry deformation. Due to the isometry condition, nonlinear terms appear in the
quasi-classical curve equation while the partition function proposed by Saitô et al [24]
is essentially linear. However, for perturbative deformation, for example from the circle,
the nonlinear term might be negligible. Thus, as long as the deformation is perturbative,
their partition function can be applicable for a polymer which cannot stretch even in thermal
fluctuation.
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On the other hand, our partition function is justifiable even for large deformation.
The partition function is summed over different topologyg, which is related to the
writhing number of the conformation. Hence, there is a possibility of a topology
change due to thermal fluctuation. It is of interest to calculate the possibility (or kernel
function) from g = 1 conformation tog = 2 conformation. Even though the partition
function (3.53) has not been concretely calculated, such computation, in principle, can be
performed.

Next, we comment on the physical meaning ofδt2n+1 and the relation between the BRS
transformation [31] and the Sato coordinate [40–42]. Since we have dealt with the SO(2)
principal bundle overS1, the gauge group is expressed as

G ⊂
∐
s∈S1

SO(2) (4.1)

where
∐

means the disjoint union.G is the infinite-dimensional Lie group. It acts upon
the shape of the curve, which corresponds to a section of the principal bundle, and deforms
it. For a given shape of elastica with a genus g, there is a unique group element which acts
upon the elastica to become the shape with constant curvature, i.e. the simplest classical
solution with g = 0. Thus the genus is well defined, which is induced from the genus
of curve (the quasi-classical section). There is a filtered decomposition ofG as a family
of subgroupsGg with respect to the genus, whose action on the elastica preserves its
genus. The representation of each groupGg will be realized as theGg module in the
set of corresponding Jacobi varieties. However, in soliton theory, instead of dealing with
individual sets of Jacobi varieties of genusg, it is natural to consider the UGM if one wishes
to formally treat a soliton equation. In fact, there are singular elements inG, which change
the genus of the elastica; such transformations are known as global gauge transformations.
Corresponding to UGM,G should also be regarded as the inductive limit of the filtration of
Gg with respect to the genusg and thenG naturally contains the singular elements due to
the natural extension of the group action. ThusG is represented as a subset of GL(∞) in
the UGM. The quasi-classical curve (a section of the SO(2) principal bundle) is embedded
in the UGM. The infinitesimal deformation of the curve in the UGM can be expressed by
the vector in the UGM. In other words, such deformation exhibits (mathematical) velocity
of a trajectory in the UGM and can be represented as a subset of the infinite-dimensional
general linear Lie algebra gl(∞), which is known as the affine Lie algebraA(1)1 [41]; A(1)1
is the Lie algebra associated with the Lie groupG. We introduce the extrinsic differential
operator in the UGM

δ :=
∑
n

dt2n+1∂t2n+1 δ2 = 0. (4.2)

Then (3.15) and (3.17) are expressed as forA := kqcl ds

δA = �̃u1 (4.3)

where

u1 =
∑
n

u
(n)

1 dt2n+1 �̃ := �k−1
qcl∂s. (4.4)

Noting the fact thatu(n)1 is the Hamiltonian density of the MKdV hierarchy

δu1 ≈ 0 (4.5)

where≈ means equivalence after integration of both sides overs like (3.49) and (3.50).
Sinceu1 obeys the Grasmannian algebra,u1 can be regarded as a fermionic field overS1.
Consequently (4.3) and (4.5) can be regarded as the BRS transformation of this system.
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Hence,δt2n+1 in the path integration may be naturally understood in the framework of
the Faddeev–Popov integration scheme [31]. In fact, the square root of the Frenet–Serret
system (2.2) can be regarded as the Dirac operator [11, 12], which is realized by confining
the free Dirac field into a thin elastic rod. Using the Dirac field confined in the elastica, we
have constructed the MKdV hierarchy andτ -function as the partition function of the Dirac
field [47]. Thus, it is expected that the partition function (3.53) should also be expressed
by theτ -function of the MKdV hierarchy.

Here, we mention a conjecture associated with the critical phenomenon of this elastica
model. The critical point must be determined as a topological discontinuity of the moduli
space of the quasi-classical elastica. At this point, physical quantity sometimes diverges
and becomes meaningless. We expect that the length of the elastica becomes less important
around the critical point, for example the topological change, as a kernel function at an
ordinary second-order critical point becomes scale-invariant [48]. We will consider a
dilatation of a quasi-classical elastica for the normal direction of elastica

Xc = X + it eiφc (4.6)

whereXc and φc are an affine vector and tangential phase of the quasi-classical elastica
at the critical point, andt is a real deformation parameter. The infinitesimal length of the
elastica dsc becomes

dsc =
√

dXc dX̄c ≈ (1− kct) ds kc := ∂sφc (4.7)

and then the length of elastica is∫
dsc ≈ L− t (φc(L)− φc(0)). (4.8)

Noting thatφc(L)− φc(0) = 2πn, n ∈ Z, this deformation makes the length of the elastica
change. However, this deformation must be compatible with the isometric condition since
we have been dealing with non-stretching elastica. Both requirements seem to contradict
each other, but the critical point is an irregular point at which the contradicted objects
coexist. From (3.2), it in (4.6) must be proportional touc := u1+ iu2 with (3.18b), andu1

satisfies (3.19b) in respect of the deformation parametert

ict = uc = 1
4k

2
c − i 1

2∂skc (4.9)

wherec is a real proportional constant. Since this relation is the Miura map, from (3.19b),
uc obeys the KdV equation

ic = ∂tuc = 6uc∂suc+ ∂3
c uc. (4.10)

By integrating it ins, (4.10) becomes

ics = 3u2
c + λ∂2

s uc. (4.11)

For z := isw := uc/2 andc = −2, (4.11) can be rewritten as

∂2
z w = 6w2+ z. (4.12)

This is the Painlev́e equation of the first kind. Thus, we conjecture that at a critical point
of the elastica, an expectation value obeys the Painlevé equation of the first kind [49]. In
our scheme, we formally obtain the series of the ordinary differential equations related to
the KdV hierarchy (from the Miura map) and the Painlevé transcendents. Thus, the moduli
space must be closely related to the quantum two-dimensional gravity, in which (4.12) and
the KdV hierarchy naturally appear [50–52]. In fact, the loop soliton partially appears
in the immersed surface in three-dimensional spaceR3 [38, 53]. By the fermionic study
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[47, 53–57], the immersed surface system is interpreted as a natural extension of the elastica
system and also that of the Liouville surface system whose quantum version is known as
the quantum two-dimensional gravity [55, 56]. Thus, we plan to investigate the immersed
surface system and reveal the relation between the elastica system and the quantum two-
dimensional gravity. (Here it should be noted that the elastica problem is not directly related
to the string problem in string theory because the action of the elastica is biharmonic for
X while that of the string is harmonic [55]. In non-relativistic space, thickness is more
important and the biharmonic equation is very natural.)

As we dealt with the kinetic properties of the large closed polymer and investigated the
moduli of the MKdV equation inCP 1, recently another statistical mechanics model of a
large polymer has been reported [58]. A partition function of non-contractible self-avoiding
two-dimensional polymers in the topological torus

T = C/(L1Z+ L2Z) (4.13)

was studied associated with the MKdV equation. The partition function of such polymers
was also solved by the MKdV equation [58] and is recognized as itsτ -function [59]. As
are assumed the base space asCP 1, it can also be replaced with the topological torus.
Then, the ratioL : L1 : L2 becomes important as the boundary conditions but our partition
function can be formally calculated. The obtained partition function may also be closely
related to theτ -function of the MKdV equation. It is a very interesting fact that the MKdV
equation appears and plays central roles in both theories even though both are not directly
concerned with the models.

Finally, we will mentioned further possibilities and the development of this theory.
We have investigated the elastica in two-dimensional space but can extend this theory to
that in three-dimensional space if we can classify the solutions of quasi-classical curves of
the elastica in three-dimensional space. It is well known that the nonlinear Schrödinger
equation appears as a vortex soliton in three-dimensional space, which is related to an
elastica without the elastic torsion force [60]. Using the similarity between the MKdV
equation and the nonlinear Schrödinger equation, the study can be performed by imitating
the above argument [15, 28, 63]. Then, instead of the Goldstein–Petrich scheme [8, 9],
there appears the Langer–Perline scheme [62] which is the higher-dimensional object of
the Goldstein–Petrich one [15]. Then the nonlinear Schrödinger hierarchy appears as a
substitute of the MKdV hierarchy [15, 61–63]. There we might also need investigation
into the moduli of quasi-classical elastica in three-dimensional space including topological
properties like a knot invariance. Then the ambient isotopy plays an important role besides
the fundamental group (3.23) [64].

Furthermore, even though we have formally classified the moduli of the quasi-classical
elastica in two-dimensional space, we cannot explicitly draw the shape of the closed elastica
of g > 1 now. Accordingly, it is very important for this study to find explicit shapes of
closed elastica ofg > 1. If we could explicitly draw any shapes of closed quasi-classical
elastica in the plane ofg = 2 or 3 using hyperelliptic functions, we think they may have
enormous effects on this problem. Since the summation of the partition function might
converge on the genusg, to determine the shapes even for smallg means important steps
towards solving this problem.

Moreover, it is also of interest to deal with an elastic rod which can stretch as a
more physical model [14] and higher-dimensional objects, such as an immersed surface
[38, 53, 56, 57, 65].
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[46] Belokols E D, Bobenko A I, Enol’skii V Z, Its A R and Matveev V B 1994 Algebro-Geometric Approach to

Nonlinear Integrable Equations(New York: Springer)
[47] Matsutani S 1995Int. J. Mod. Phys.A 10 3091–107
[48] Amit D J 1978Field Theory, the Renormalization Group, and Critical Phenomena(New York: McGraw-Hill)
[49] Ince E L 1956Ordinary Differential Equations(New York: Dover)
[50] Douglas M R and Shenker S H 1990Nucl. Phys.B 335 635–54
[51] Gross D J and Migdal A A 1990 Phys. Rev. Lett.64 717–20
[52] Sogo K 1993J. Phys. Soc. Japan62 1887–94
[53] Matsutani S 1997J. Phys. A: Math. Gen.30 4019–27
[54] Matsutani SJ. Phys. A: Math. Gen.submitted
[55] Polyakov A M 1987 Gauge Fields and Strings(London: Harwood Academic)
[56] Konopelchenko B G and Taimanov I A 1998 Generalized Weierstarass formulae, soliton equations and

Willmore surfaces I. Tori of revolution and the mKDV equationPreprint dg-ga/9506011
[57] Carroll R and Konopelchenko B 1996Int. J. Mod. Phys.A 11 1183–215
[58] Zamolodchikov Al B 1994Nucl. Phys.B 432 427–56
[59] Kakei S 1996J. Phys. Soc. Japan65 337–9
[60] Hashimoto H 1972J. Fluid Mech.51 477–85
[61] Matsutani SJ. Phys. A: Math. Gen.submitted
[62] Langer J and Perline R 1991J. Nonlinear Sci.1 71–91
[63] Matsutani S 1994Phys. Lett.189A 27–31
[64] Kauffman L H 1988Contem. Math.78 263–97
[65] Matsutani S 1998J. Phys. A: Math. Gen.31 to appear


